skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cooksey, Kathy L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Seagroves, Scott; Barnes, Austin; Metevier, Anne; Porter, Jason; Hunter, Lisa (Ed.)
    Classification is a general tool of science; it is used to sort and categorize biological organisms, chemical elements, astronomical objects, and many other things. In scientific classification, taxonomy often reflects shared physical properties that, in turn, may indicate shared origins and/or evolution. A “hands-on” galaxy-classification activity developed and implemented by Professional Development Program (PDP) participants, for a high-school summer STEM enrichment program, has been adopted for various age groups and venues, from young (K–3) to college students. We detail the basic tools required, outline the general activity, and describe the modifications to the activity based on learners’ ages and learning objectives. We describe the facilitation strategies learned through PDP training and used when implementing the activity, including prompts to motivate the students. We also discuss how we connected the classification process to astronomy and science more broadly during the concluding remarks. 
    more » « less
  2. ABSTRACT We present the first empirical constraints on the turbulent velocity field of the diffuse circumgalactic medium around four luminous quasi-stellar objects (QSOs) at z ≈ 0.5–1.1. Spatially extended nebulae of ≈50–100 physical kpc in diameter centred on the QSOs are revealed in [O ii] $$\lambda \lambda \, 3727,3729$$ and/or [O iii] $$\lambda \, 5008$$ emission lines in integral field spectroscopic observations obtained using Multi-Unit Spectroscopic Explorer on the Very Large Telescope. We measure the second- and third-order velocity structure functions (VSFs) over a range of scales, from ≲5 kpc to ≈20–50 kpc, to quantify the turbulent energy transfer between different scales in these nebulae. While no constraints on the energy injection and dissipation scales can be obtained from the current data, we show that robust constraints on the power-law slope of the VSFs can be determined after accounting for the effects of atmospheric seeing, spatial smoothing, and large-scale bulk flows. Out of the four QSO nebulae studied, one exhibits VSFs in spectacular agreement with the Kolmogorov law, expected for isotropic, homogeneous, and incompressible turbulent flows. The other three fields exhibit a shallower decline in the VSFs from large to small scales. However, with a limited dynamic range in the spatial scales in seeing-limited data, no constraints can be obtained for the VSF slopes of these three nebulae. For the QSO nebula consistent with the Kolmogorov law, we determine a turbulence energy cascade rate of ≈0.2 cm2 s−3. We discuss the implication of the observed VSFs in the context of QSO feeding and feedback in the circumgalactic medium. 
    more » « less
  3. Abstract We use medium-resolution Keck/Echellette Spectrograph and Imager spectroscopy of bright quasars to study cool gas traced by Caiiλλ3934, 3969 and Naiλλ5891, 5897 absorption in the interstellar/circumgalactic media of 21 foreground star-forming galaxies at redshifts 0.03 <z< 0.20 with stellar masses 7.4 ≤ logM*/M≤ 10.6. The quasar–galaxy pairs were drawn from a unique sample of Sloan Digital Sky Survey quasar spectra with intervening nebular emission, and thus have exceptionally close impact parameters (R< 13 kpc). The strength of this line emission implies that the galaxies’ star formation rates (SFRs) span a broad range, with several lying well above the star-forming sequence. We use Voigt profile modeling to derive column densities and component velocities for each absorber, finding that column densitiesN(Caii) > 1012.5cm−2(N(Nai) > 1012.0cm−2) occur with an incidencefC(Caii) = 0.63+0.10−0.11(fC(Nai) = 0.57+0.10−0.11). We find no evidence for a dependence offCor the rest-frame equivalent widthsWr(CaiiK) orWr(Nai5891) onRorM*. Instead,Wr(CaiiK) is correlated with local SFR at >3σsignificance, suggesting that Caiitraces star formation-driven outflows. While most of the absorbers have velocities within ±50 km s−1of the host redshift, their velocity widths (characterized by Δv90) are universally 30–177 km s−1larger than that implied by tilted-ring modeling of the velocities of interstellar material. These kinematics must trace galactic fountain flows and demonstrate that they persist atR> 5 kpc. Finally, we assess the relationship between dust reddening andWr(CaiiK) (Wr(Nai5891)), finding that 33% (24%) of the absorbers are inconsistent with the best-fit Milky WayE(B−V)-Wrrelations at >3σsignificance. 
    more » « less
  4. ABSTRACT This paper presents a systematic study of the photoionization and thermodynamic properties of the cool circumgalactic medium (CGM) as traced by rest-frame ultraviolet absorption lines around 26 galaxies at redshift z ≲ 1. The study utilizes both high-quality far-ultraviolet and optical spectra of background QSOs and deep galaxy redshift surveys to characterize the gas density, temperature, and pressure of individual absorbing components and to resolve their internal non-thermal motions. The derived gas density spans more than three decades, from $$\log (n_{\rm H}/{{\rm cm^{-3}}}) \approx -4$$ to −1, while the temperature of the gas is confined in a narrow range of log (T/K) ≈ 4.3 ± 0.3. In addition, a weak anticorrelation between gas density and temperature is observed, consistent with the expectation of the gas being in photoionization equilibrium. Furthermore, decomposing the observed line widths into thermal and non-thermal contributions reveals that more than 30 per cent of the components at z ≲ 1 exhibit line widths driven by non-thermal motions, in comparison to <20 per cent found at z ≈ 2–3. Attributing the observed non-thermal line widths to intra-clump turbulence, we find that massive quenched galaxies on average exhibit higher non-thermal broadening/turbulent energy in their CGM compared to star-forming galaxies at z ≲ 1. Finally, strong absorption features from multiple ions covering a wide range of ionization energy (e.g. from Mg ii to O iv) can be present simultaneously in a single absorption system with kinematically aligned component structure, but the inferred pressure in different phases may differ by a factor of ≈10. 
    more » « less
  5. ABSTRACT We present a detailed study of two partial Lyman limit systems (pLLSs) of neutral hydrogen column density $$N_\mathrm{H\, I}\approx (1-3)\times 10^{16}\, \mathrm{cm}^{-2}$$ discovered at $$z$$ = 0.5 in the Cosmic Ultraviolet Baryon Survey (CUBS). Available far-ultraviolet spectra from the Hubble Space Telescope Cosmic Origins Spectrograph and optical echelle spectra from MIKE on the Magellan Telescopes enable a comprehensive ionization analysis of diffuse circumgalactic gas based on resolved kinematics and abundance ratios of atomic species spanning five different ionization stages. These data provide unambiguous evidence of kinematically aligned multiphase gas that masquerades as a single-phase structure and can only be resolved by simultaneous accounting of the full range of observed ionic species. Both systems are resolved into multiple components with inferred α-element abundance varying from [α/H] ≈−0.8 to near solar and densities spanning over two decades from log nH/cm−3 ≈ −2.2 to <−4.3. Available deep galaxy survey data from the CUBS program taken with VLT/MUSE, Magellan/LDSS3-C and Magellan/IMACS reveal that the $$z$$ = 0.47 system is located 55 kpc from a star-forming galaxy with prominent Balmer absorption of stellar mass $${{M_{\rm star}}}\approx 2\times 10^{10}\, {{M_{\odot}}}$$, while the $$z$$ = 0.54 system resides in an overdense environment of 11 galaxies within 750 kpc in projected distance, with the most massive being a luminous red galaxy of $${{M_{\rm star}}}\approx 2\times 10^{11}\, {{M_{\odot}}}$$ at 375 kpc. The study of these two pLLSs adds to an emerging picture of the complex, multiphase circumgalactic gas that varies in chemical abundances and density on small spatial scales in diverse galaxy environments. The inhomogeneous nature of metal enrichment and density revealed in observations must be taken into account in theoretical models of diffuse halo gas. 
    more » « less
  6. null (Ed.)
    ABSTRACT We present a systematic investigation of physical conditions and elemental abundances in four optically thick Lyman-limit systems (LLSs) at z = 0.36–0.6 discovered within the cosmic ultraviolet baryon survey (CUBS). Because intervening LLSs at z < 1 suppress far-UV (ultraviolet) light from background QSOs, an unbiased search of these absorbers requires a near-UV-selected QSO sample, as achieved by CUBS. CUBS LLSs exhibit multicomponent kinematic structure and a complex mix of multiphase gas, with associated metal transitions from multiple ionization states such as C ii, C iii, N iii, Mg ii, Si ii, Si iii, O ii, O iii, O vi, and Fe ii absorption that span several hundred km s−1 in line-of-sight velocity. Specifically, higher column density components (log N(H i)/cm−2≳ 16) in all four absorbers comprise dynamically cool gas with $$\langle T \rangle =(2\pm 1) \times 10^4\,$$K and modest non-thermal broadening of $$\langle b_\mathrm{nt} \rangle =5\pm 3\,$$km s−1. The high quality of the QSO absorption spectra allows us to infer the physical conditions of the gas, using a detailed ionization modelling that takes into account the resolved component structures of H i and metal transitions. The range of inferred gas densities indicates that these absorbers consist of spatially compact clouds with a median line-of-sight thickness of $$160^{+140}_{-50}$$ pc. While obtaining robust metallicity constraints for the low density, highly ionized phase remains challenging due to the uncertain $$N\mathrm{(H\, {\small I})}$$, we demonstrate that the cool-phase gas in LLSs has a median metallicity of $$\mathrm{[\alpha /H]_{1/2}}=-0.7^{+0.1}_{-0.2}$$, with a 16–84 percentile range of [α/H] = (−1.3, −0.1). Furthermore, the wide range of inferred elemental abundance ratios ([C/α], [N/α], and [Fe/α]) indicate a diversity of chemical enrichment histories. Combining the absorption data with deep galaxy survey data characterizing the galaxy environment of these absorbers, we discuss the physical connection between star-forming regions in galaxies and diffuse gas associated with optically thick absorption systems in the z < 1 circumgalactic medium. 
    more » « less
  7. null (Ed.)
  8. Abstract We present the discovery of neutral gas detected in both damped Lyαabsorption (DLA) and Hi21 cm emission outside of the stellar body of a galaxy, the first such detection in the literature. A joint analysis between the Cosmic Ultraviolet Baryon Survey and the MeerKAT Absorption Line Survey reveals an Hibridge connecting two interacting dwarf galaxies (log (Mstar/M) = 8.5 ± 0.2) that host az= 0.026 DLA with log[N(Hi)/cm−2] = 20.60 ± 0.05 toward the QSO J2339−5523 (zQSO= 1.35). At impact parameters ofd= 6 and 33 kpc, the dwarf galaxies have no companions more luminous than ≈0.05L*within at least Δv= ±300 km s−1andd≈ 350 kpc. The Hi21 cm emission is spatially coincident with the DLA at the 2σ–3σlevel per spectral channel over several adjacent beams. However, Hi21 cm absorption is not detected against the radio-bright QSO; if the background UV and radio sources are spatially aligned, the gas is either warm or clumpy (with a spin temperature to covering factor ratioTs/fc> 1880 K). Observations with VLT-MUSE demonstrate that theα-element abundance of the ionized interstellar medium (ISM) is consistent with the DLA (≈10% solar), suggesting that the neutral gas envelope is perturbed ISM gas. This study showcases the impact of dwarf–dwarf interactions on the physical and chemical state of neutral gas outside of star-forming regions. In the SKA era, joint UV and Hi21 cm analyses will be critical for connecting the cosmic neutral gas content to galaxy environments. 
    more » « less
  9. ABSTRACT We present initial results from the Cosmic Ultraviolet Baryon Survey (CUBS). CUBS is designed to map diffuse baryonic structures at redshift z ≲ 1 using absorption-line spectroscopy of 15 UV-bright QSOs with matching deep galaxy survey data. CUBS QSOs are selected based on their NUV brightness to avoid biases against the presence of intervening Lyman limit systems (LLSs) at zabs < 1. We report five new LLSs of $$\log \, N({\mathrm{ H} \,{\small I}})/{{\rm cm^{-2}}}\gtrsim 17.2$$ over a total redshift survey path-length of $$\Delta \, z_{\mathrm{ LL}}=9.3$$, and a number density of $$n(z)=0.43_{-0.18}^{+0.26}$$. Considering all absorbers with $$\log \, N({{\mathrm{ H} \,{\small I}}})/{{\rm cm^{-2}}}\gt 16.5$$ leads to $$n(z)=1.08_{-0.25}^{+0.31}$$ at zabs < 1. All LLSs exhibit a multicomponent structure and associated metal transitions from multiple ionization states such as C ii, C iii, Mg ii, Si ii, Si iii, and O vi absorption. Differential chemical enrichment levels as well as ionization states are directly observed across individual components in three LLSs. We present deep galaxy survey data obtained using the VLT-MUSE integral field spectrograph and the Magellan Telescopes, reaching sensitivities necessary for detecting galaxies fainter than $$0.1\, L_*$$ at d ≲ 300 physical kpc (pkpc) in all five fields. A diverse range of galaxy properties is seen around these LLSs, from a low-mass dwarf galaxy pair, a co-rotating gaseous halo/disc, a star-forming galaxy, a massive quiescent galaxy, to a galaxy group. The closest galaxies have projected distances ranging from d = 15 to 72 pkpc and intrinsic luminosities from $${\approx} 0.01\, L_*$$ to $${\approx} 3\, L_*$$. Our study shows that LLSs originate in a variety of galaxy environments and trace gaseous structures with a broad range of metallicities. 
    more » « less